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NASA Workshop on the Automation of Time
Series,
Signatures, and Trend Analysis

May 12, 1993

Philip Laird and Robert Shelton, Coordinators

This workshop was conceived as an outgrowth of a project to automate the monitor-
ing of signatures acquired from shuttle telemetry. During preliminary discussions held in
December 92, it became clear that even for the task at hand—a scientifically straight for-
ward pattern recognition problem—there were a relatively large number of techniques which
had been considered and/or used for similar projects within NASA, defense, and the pri-
vate sector. The related issues of trend analysis and time series prediction arose from the
discussion related to the application of certain advanced techniques from machine learning
to the signature recognition problem. In spite of the diversity of the problem domain and
proposed solutions, certain themes emerged. The common issues were data reduction, data
management, feature extraction, and, perhaps most important, integration of advanced soft-
ware architectures with data sources and end-users. Due to the criticality of this last issue of
two-sided integration, when the decision to have the workshop was made, it was decided that
unlike many purely technical and/or scientific conferences, the organizers would aggressively
recruit participation from the operations community. The final program reflects a diversity
of applications ranging from processing astronomical observations to tracking of problem
reports. The talks included frontier technical areas such as wavelets, neural networks and
artificial intelligence, as well as user interfaces, data management, and foremost, needs of
our customers. Participants were drawn from eight NASA centers with an invited talk given
by Professor Andreas Weigend of the Department of Computer Science at the University of
Colorado, Boulder. A three hour segment of the conference included a live video link among
six NASA centers for which facilities were available.

Robert Shelton,

Co-coordinator



Speakers and Coordinators for the
NASA Workshop on the Automation of Time Series
Signatures, and Trend Analysis

R ]

May 12, 1993

Moming Session
Building N213, Room 261
NASA Ames Research Center

Robert Shelton, Chair

NASA Johnson Space Center

Mail Code PT41

Houston, TX 77058

713-483-5901
SHELTON@GOTHAMCITY.JSC.NASA.GOV

8:30 -- 9:00
A Health Monitoring Expert System

: June Zakrajsek
NASA Lewis Research Center
21000 Brookpark Rd.
Cleveland, OH 44135
216-433-7470
JUNE@ENGLAND.LERC.NASA.GOV

9:00 -- 9:30
A Pattern Recognition Toolkit for Analyzing Signatures
in Shuttle Telemetry Data
Dave Hammen
Mitre Corp.
1120 NASARd. 1
Houston, TX 77058
713-335-8510
DHAMMEN@MITRE.ORG

9:30 -- 10:00
Analysis of Stochastic Time Series Data

Jeff Scargle
NASA Ames Research Center
Mail Stop 245-3
Moffett Field, CA 94035-1000
415-604-6330
JEFFREY @SUNSHINE.ARC.NASA.GOV

10:15 -- 10:45
Comparison of Temporal Analysis Methods
Jay Norris
Code 668
NASA Goddard Space Flight Center /[LHEA/GROSSC
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Greenbelt, MD 20771
301-286-3367
NORRIS@GROSSC.DNET.NASA.GOV

10:45 -- 11:15
Concept Formation in Temporally Structured Domains
Wayne Iba
Recom Technologies
NASA Ames Research Center

Mail Stop 269-2

Moffett Field, CA 94035-1000
415-604-4721
IBA@PTOLEMY.ARC.NASA.GOV

Afternoon Session

Building N203, Room 104

NASA Ames Research Center
(by Video Teleconference to other Centers)

Philip Laird, Chair

NASA Ames Research Center

Mail Stop 269-2

Moffett Field, CA 94035-1000
415-604-3362
LAIRD@PTOLEMY.ARC.NASA.GOV

12:10 -- 12:40
Results of the Santa Fe Time Series Competition

Andreas Weigend
Xerox Corp. and University of Colorado, Boulder
Xerox PARC/SSL
3333 Coyote Hill Road
Palo Alto, CA 94304
(408) 812-4765
WEIGEND @PARC.XEROX.COM

12:40 -- 1:05
Shallow and Deep Knowledge Techniques for Diagnosis of
Time Dependent Data
Steve Chien, Nicolas F. Rouquette, Richard Doyle,
Leonard K. Charest, Jr., and E. Jay Wyatt
NASA Jet Propulsion Laboratory
Pasadena, CA 91109, USA
818-306-6144
CHIEN @ AIG.JPL.NASA.GOV

1:05 -- 1:30
Neural Networks for Prediction
Claudia Meyer
Sverdrup Technology
NASA Lewis Research Center
21000 Brookpark Rd.
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Cleveland, OH 44135
216-433-7511
SPMLM@VENUS.LERC.NASA.GOV

1:30 -- 1:55
System Trend Analysis Reduction Tool

W. Joseph Elliott
Analex Systems, Inc.
P.O. Box 21206
Kennedy Space Center, FL 32818-0206
407-861-0913
Fax: 407-861-5774

1:55 -- 2:20
Current Trend Analysis Activities at
Goddard Space Flight Center

Walt Truszkowski and Troy Ames (GSFC),
Sid Bailin and Scott Henderson (CTA Inc.)

Code 522.3

NASA Goddard Space Flight Center
Greenbelt, MD 20771

301-286-7896

WTRUSZKOWSKI.520@POSTMAN.GSFC.NASA.GOV

2:20 -- 2:45

Predictive Information Research for Aircraft

Fault Management
Anna Trujillo
NASA Langley Research Center
Hampton, VA 23665
804-864-8047
A.C.TRUJIILLO@LARC.NASA.GOV

3:30 -- 4:30
Discussion Session
Building N213, Room 261
NASA Ames Research Center

Padhraic Smyth, Chair

Communication Systems Research, 238-420
NASA Jet Propulsion Laboratory

Pasadena, CA 91109, USA

818-306-3768

PIS@BVD.JPL.NASA.GOV
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A Health Monitoring Expert System

June Zakrajsek,
NASA Lewis

A health monitoring expert system software architecture has been
developed to support condition-based health monitoring of rocket
engines. It’s first application is to the Space Shuttle Main Engine.
The Post-Test Diagnostic System (PTDS) runs offline, using as input
the data recorded from hundreds of sensors. The system is invoked
after a test has completed, and produces suggestions, analysis, and an
organized graphical presentation of the data with important effects
highlighted. '

The analysis that is performed within the PTDS for the SSME are
feature driven. Classical techniques have been used to develop
general routines that detect features, such as drifts, spikes, level
shifts, erratic, excessive noise, peaks, and different-than. These
techniques provide the features required by the PTDS, but require
approximately twenty minutes of processing time, and considerable
effort in determining the feature thresholds.

The overall expert system architecture has been developed and
documented so that expert modules analyzing other components can be
easily added. The architecture emphasizes modularity, reusability,

and open system interfaces so that it may be used to analyze other
systems as well.
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A Pattern Recognition Toolkit for Analyzing Signatures in Shuttle
Telemetry Data '
Dave Hammen

The MITRE Corporation

1120 NASA Road 1 Houston, TX

e-mail: dhammen@mitre.org

Several flight control positions examine plots of Shuttle telemetry data
on paper strip chart recorders (SCRs). These plots graphically portray
on-board activities, which helps the controllers in their decision-
making process. Controllers identify trends and events on the SCRs by
recognizing patterns in the plots. For example, the Electrical
Generation and Integrated Loading controllers deduce which electrical
equipment has been turned on or off by examining the SCR plots of
electrical current usage. The SCRs generate continuous plots, which the
controllers value, but are costly to maintain. Workstation-based SCR
emulations lack the key features (permanence, resolution, and size) of
the paper plots, making controllers reluctant to give up the paper

plots. While replacing the paper SCRs with on-screen emulations might
reduce costs, this replacement would not reduce human involvement and
cannot yet reproduce the resolution of the paper plots.

Automated signature detection and identification capabilities could
perform some of the data interpretation tasks controllers do now,

freeing the controllers to perform more important tasks. A workstation-
based SCR tool that includes such automated signature detection and
identification capabilities may reduce the need for the expensive paper
SCRs. The short-term goal of this project is to apply several pattern
recognition techniques to the electrical equipment recognition problem.
We will then move on to another controller position. By applying

pattern recognition techniques to a series of increasingly complicated
Mission Control signature identification problems, we hope to move
towards a general-purpose signature detection and identification
capability. The ultimate goal of this project is to build a pattern
recognition toolkit that will help build signature detection and
identification applications. This project is jointly funded by the
Real-Time Data System (RTDS) project and by the Software Technology
Branch (STB) at NASA'’s Johnson Space Center, and involves personnel from
RTDS, STB, NASA Ames Research Center, and the MITRE Corporation.
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Analysis of Stochastic Time Series Data

Jeffrey Scargle
Ames Research Center

Many astronomical objects are variable in brightness (variable
stars, active galactic nuclei, quasars, radio galaxies, galactic
X-ray sources, etc.). In some cases the variability is periodic,
but in the vast majority of those listed the variations are disordered
and unpredictable. (Note: We are here discussing real variations
in source brightness, not observational errors. Unfortunately
astronomers use the term "noise” to refer to stochastic variation,
even when it is intrinsic to the source.)

The goal of this work is to understand the physical processes
underlying the observed stochastic variations. As with most data analysis,
this is carried out by developing models of the processes and comparing
the model behavior with that of the time series data for the astronomical
objects.

To this end we have developed two classes of analysis tools:
(1) models to represent stochastic physical processes:

(a) random processes
(b) chaotic processes (chaotic dynamical systems)

(2) data analysis tools:

(a) deconvolution methods

(b) wavelet analysis; the scalegram

(c) methods for unevenly spaced data

(d) nonlinear prediction; Lyapunov exponent estimation

We present a case study in which wavelet methods were used to analyze

a long time series for the extremely active fluctuations of the X-ray
source Scorpius X-1. The self-similar behavior detected by the use of

the scalegram (a wavelet-analog of the power spectrum) led us to consider
a class of spatially extended models called coupled map lattices (related
to cellular automata). A particular model, called the "dripping handrail,"
was singled out because it represents physical processes operating in

the accretion disks thought to be present in the astronomical objects.

The power spectra and scalegrams of time series synthesized with this

model agree very well with those of the observed time series

data. In particular, both show two features characteristic of the

variability of a class of x-ray sources including Scorpius X-1:

quasi-periodic oscillations (QPQO’s) and low-frequency noise (LFN).

These features were previously thought to be due to two separate mechanisms,
but we argue that they are due to a single physical process.

Bibliography:

Scargle, J. Studies in astronomical time series analysis.
I: Modeling random processes in the time domain.
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Astrophysical Journal Supplements, 1981, 45, 1-71.

------ II: Modeling chaotic and random processes with linear filters.
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------ III: Fourier transforms, autocorrelation functions, and
cross-correlation functions of unevenly spaced data,
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------ IV: Modeling chaotic and random processes with linear filters.
Astrophysical Journal, 359, 469-482

Donoho, D., and Scargle, J. (1993) Studies in astronomical time series
analysis. V: Wavelets and the scalegram; preprint.

Scargle, J., Donoho, D., Crutchfield, J., Steiman-Cameron, T., Imamura, J.,
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WHAT IS CHAOS?

Evolution of a Chaotic System Has these Properties:

s DISORDER: The evolution of the system appears irregular
and unpredictabile.

e DETERMINISM: if initial conditions are EXACTLY the
same, the future evolution is the same.

e SENSITIVITY TO INITIAL CONDITIONS : If initial
conditions are even A TINY BIT different, the future
evolution is very different (exponential divergence).

Physical Laws Futuras
Evelution

Start

Even simple systems can be chaotic!
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The Bernoulli Shift

{a) One-sided: Xn+l =(2Xn)mod 1

Tnitial value: Xo=.bibsbabybs... by
——»  Xj=.bpbgbgbs... by
X =.bgbgbs... by
X3=.bgbs... by

in=[]

(a) Two-sided: Xp= ...bgbab;.bbybs...
Xi1= ...bgbab1bj.bbj...

X9=...bgbabib;bs .b3...

X.1= ...bab2. b1bibybgbsbs ...

X.2=...bg.bab1bibybsbsbs ...

(The World's Inost random process!)

ez.



Moaodified map:

Xn+l =2Xp -Sign(Xpn) -1<Xp=1

kE=0,1, 2, ..

The Map The Time Series
1 1
L S X,
-1 -1
-1 X 1 n
Probahility PCXD) = 172 -1<Xp =<1
distribution:
0 otherwise
Mean value: ECO = 0
Variance: G2 = 1/3
Autocorrelation: pe&) = 13302k
1.0
edk)
0.0
k

L3
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Cellular Automaton Process

Discrete states: Yn,m = 0 or 1

m+1 )] mod?2

[Yn,m-l +D(Yn,m ,Yn,

m

Dynamics: Yn+ 1,

1

otherwise

x=1, vy

0

1

D(x,vy)

A T
3 mﬂ.u. e
Tl
i /Mﬂ.ﬂ
ol

=0

Initial state: YO,0 = 1, YO,m
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Autoregressive model: R = A*X; A = C 1

A=(...,A-3, A2, A_1,0, A1, A2, A3, .. .)

Ro=Xn+ A1 Xa-1 * A2 Xp-2 +. . . (causal)

Rn =Xn+ A-1 Xn+1 * A-2 Xn+2 +. . . (acausal)

Rn - - . A—an+l + Xn + Al Xn—l . .. (mixed)

Example: A = (H,Al) = (Il,—a)
Rn =Xn - aXn—l
C=(1,a,a2,a3,a4 .. .)

Xn = Rn + aRn—1+ aan—2+ a3Rn—3 . .

Ll



Moving average model: X = C*R

Xn = z Ckx Rp-x (causal <--> k>0: acausal <-—> k<0)
k

A



(—'—_"_——_—————f—
WOLD DECOMPOSITION THEOREM

Let X be any stationary process; then
X =CxR+D
e R is a WHITE noise process (the innovation)
e C is a causal filter (Ci=0, i<0, i.e. no output before input)

e D is a linearly deterministic process (future is
linearly predictable from past with zero mean-square-error)

e R, D stationary, not correlated with each other

« C is minimum delay

10
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DECONVOLUTION TECHNIQUE:

TEE DATA: Y,,n=0,1,2,...,N

RANDOM PROCESS

4 ™

TEIENODEL: Y =R * C (convolution)

R is purely random
C is a constant pulse shape

1

Note thatif A=C ~ then convolving A intoY givesR.

So define R = A* Y and maximize its randomness.

.

CHAOTIC PROCESS
( TERVNODEL: Y=R *+ C (convolution) )

R is purely chaotic
C is a constant pulse shape

Note thatif A = C-1 then convolving A intoY givesR.

So define R = A* Y and maximize its ... chaosity.

.

1z



The Fundamental Problem:
e Given time series data {X,, n =1,N}
e Estimate: the filter C
the chaotic innovation R
the recurrence function F ; Rp+1=F(Rn, .. .)

The Solution:

Seek the filter A=(A_q ,..A_2,A_1, 1,A1 A2, . ,Ap)
which makes X = A*Y maximally chaotic by minimizing H;
A is then an estimate of the inverse of C; F derived by plotting
Rn+1 vs. Rp, etc.

Penalty Function H(X):
Given a set of data points Kq =1,2,... N}

s Construct a grid of (M+1)-dimensional cells in the phase space
(Xp+1. Xn. Xn-1,-- . Zp-M+1)

e Plot in this space the N-M points derivable from the data

e Then define H as one of the following:

H{1) - Total volume of the cells containing data points
H(2) - ZPi tlog Pi (Pj~ numbver of points in cell i)

15
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Figure 1: Haar wavelets for time series with 16 samples.
The vertical scale is arbitrary.
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0 100 200 300 400 500

Figure 1: Signal of 512 samples built by adding chirps, truncated sinusoidal
waves and waveforms of different time-frequency localizations.

Figure 2: Time-frequency energy distribution E f(t,w) of the signal shown
in Fig. 1. The horizontal axis is time. The vertical axis is frequency. The
highest frequencies are at the top. The darkness of this time-frequency image
increases with the value E f(t,w). The two straight lines are the time-frequency
trajectories of the chirps detected from the Gabor time-frequency atoms.
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0 100 200 300 400 500

Figure 3: Signai obtained by adding a Gaussian white noise to the signal shown
if Fig. 1. The signal to noise ratio is 4 db.

Figure 4: Time-frequency energy distribution of the noisy signal shown in Fig.
4. The white noise component has an energy that is spread across the whole
time-frequency plane.
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Figure 5: Speech recording of the word “greasy”, sampled at 8 kHz.

Figure 6: Time-frequency energy distribution of the speech recording shown
in Fig. 5. We see the low-frequency component of the “g”, the quick burst
transition to the “ea” and the harmonics of the“ea”. The “s” has an energy
distribution that is similar to a white noise.
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STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. IIl. FOURIER TRANSFORMS,
AUTOCORRELATION FUNCTIONS, AND CROSS-CORRELATION FUNCTIONS
OF UNEVENLY SPACED DATA

JerFrRey D. SCARGLE
Theoretical Studies Branch. Space Science Division, NASA-Ames Research Center
Received 1988 August 8 accepted 1989 January 24

ABSTRACT

This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation func-
tion (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series
may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be
inverted to recover the original data and the sampling, is used to compute correlation functions by means of a
procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time
series not even sampled at the same set of times. Techniques for removing the distortion of the correlation
functions caused by the sampling, determining the value of a constant component to the data, and treating
unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical

examples of the techniques are given.

Subject headings: analytical methods — BL Lacertae objects — numerical methods

1. THE PARADOX OF CORRELATION FUNCTIONS WITH UNEVENLY
SAMPLED DATA

Correlation functions are useful time series analysis tools.
They yield physical information such as the time scale of a
process or the time delay between two related processes. But
astronomical time series data are often unequally spaced in
time, due to a variety of practical considerations. (The times
may be irregular, or they be evenly spaced but with missing
observations—“gaps.”) Such unevenness produces a funda-
mental difficulty in the estimation of correlation functions, the
resoiution of which is the main point of this paper.

For data X, = X(t,) sampied at evenly spaced times ¢, =
(n = 1)At,n =1, 2,..., N the traditional estimator of the auto-
correlation function is

N=-k
pxth) = (/N) T X Xoon - (L)

This expression makes sense only if the sampie times ¢, are
evenly spaced, since it can be thought of as a kind of vector dot
product of X with X shifted in time by k. The times of the
shifted data must match up with those of the unshifted data.
Therefore the sampling interval must be constant and the lag &
must be an integer muitiple of this interval.

How should one estimate the ACF of unevenly sampled
data? Possible approaches are to interpolate the data to even
spacing and use equation (L1), or to sum product-pairs
X(t)X(t) in bins of the lag ¢, — ¢; (Mayo, Shay, and Riter 1974;
Edelson and Krolik 1988). Gastner and Roberts (1975, 1977)
circumvent the fact that the interval (¢,, ¢,.,) is not a definite
length of time, noting that statistically it does correspond to a
fixed time interval—namely, k divided by the mean sampling
rate. While these procedures may be satisfactory in some appli-
cations, they all produce some distortion and loss of informa-
tion.

The goal of this work is a correlation function estimator
which uses all of the information contained in unevenly spaced
data. The proposed approach steps briefly into the frequency
domain (computing the power spectrum) and returns to the

time domain (computing the autocorrelation function with the
Autocorrelation Theorem). While it does not explicitly inter-
polate, it can be thought of as effecting an implicit inter-
polation in the time domain. The basic tool of the
computations is the discrete Fourier transform (§ II), which
yields the power spectrum used in the computation of the auto-
correlation function (§ III) and the cross-spectrum used to
compute the cross-correlation function (§ IV). Examples using
artificial data appear in all three of these sections. Section V
exhibits correlation functions for some actual data on BL
Lacertae—the prototype of a class of violently variable radio
sources. The FORTRAN code for computing the discrete
Fourier transform is given in Appendix A. Appendix B dis-
cusses the frequencies used in the inverse transformation. The
remaining appendices treat an underlying constant component
to the data, and unequalily weighted data.

II. DISCRETE FOURIER TRANSFORM

This section presents an algorithm for the discrete Fourier
transform (DFT) of unevenly sampled data. Later this trans-
form will be used to estimate correlation functions, but it is of
interest in its own right and in connection with power spectra.

Scargie (1982, hereafter Paper II) modified the classical defi-
nition of the DFT in order that the resulting power spectrum
(or periodogram) of unevenly sampled data have the simple
statistical behavior which obtains in the case of even sampling
(Paper II, Appendix A), while maintaining time transiation
invariance (Paper II, Appendix B). In addition, spectral
analysis using this estimator is equivalent to least-squares
fitting of sine waves to the data (Paper I, Appendix C). Paper
[1 deait with power spectra, so the phase of the Fourier trans-
form was unimportant; the present work differs slightly in cor-
rectly treating the complex phase of the transform.

Press and Teukolsky (1988) give an informative discussion of
the beneficial properties of this periodogram, as weil as a
FORTRAN algorithm that uses a recurrence technique 1o gain a
factor of 3 in speed. Further improvement is obtained with
Press and Rybicki’s (1989) clever N log N algorithm.
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STUDIES IN ASTRONOMICAL TIME SERIES ANALYSIS. IV. MODELING CHAOTIC AND
RANDOM PROCESSES WITH LINEAR FILTERS

JEFFREY D. SCARGLE
Theoretical Studies Branch, Space Science Division, NASA/Ames Research Center
Received 1989 February 13; accepted 1990 February 21

ABSTRACT

While chaos arises only in nonlinear systems, standard linear time series models are nevertheless useful for
analyzing data from chaotic processes. This paper introduces such a model, the chaotic moving average. This
time-domain model is based on the theorem that any chaotic process can be represented as the convolution of
a linear filter with an uncorrelated process called the chaotic innovation. We also present a technique, minimum
phase-volume deconvolution, to estimate the filter and innovation. The algorithm measures the quality of a
model using the volume covered by the phase portrait of the innovation process. Experiments on synthetic
data demonstrate the following properties of the aigorithm: It accurately recovers the parameters of simple
chaotic processes. Though tailored for chaos, the algorithm can detect both chaos and randomness, dis-
tinguish them from each other, and separate them if both are present. It can also recover non-minimum-delay
pulse shapes in non-Gaussian processes, both random and chaotic.

Subject heading: numerical methods

I. CHAOTIC AND RANDOM PROCESSES

Nonlinear initial value probiems often have solutions which
are very senmsitive to initial conditions, and which seem
disordered—even though randomness does not appear explic-
itly in the equations. Very simple dynamical equations may
have this property, called chaos. Scientists should be aware
that data which seem random may actually be from a deter-
ministic chaotic process.! Furthermore, chaos and randomness
can be present in the same physical system. There is thus a
need for techniques to identify and separate these two kinds of
processes.

We take a chaotic process to be one that has the following
properties: (1) disorder; (2) determinism; (3) sensitivity to
initial conditions; (4) random initial conditions; (5) correlation
function vanishes as the lag goes to infinity; (6) aperiodicity; (7)
stationarity. More precisely, for a process to be chaotic almost
all realizations must have these properties. For just as with
random processes, some realizations—a set of measure zero—
may fail to have any of these properties. These interdependent
qualities are listed to give the flavor of chaos, not as a formal
definition.

A brief discussion of these seven properties is in order. Dis-
order, or more properly apparent disorder, is most fundamental
yet most difficult to define. A chaotic process is quite ordered,
in that it obeys deterministic dynamics and is seen as such
when properly viewed in its state space. But the process mas-
querades as disordered when viewed via the time series. As we
will see, filtering is part of this masquerade. The primary goal
of this paper is to provide tools to reveal this masquerade by
simuitaneously undoing the filtering and unveiling the hidden
regularity.

Determinism means that if the initial conditions are precisely
repeated, the system evolution over time is identical. But sensi-
tivity to initial conditions means that as long as there is some
difference between two initial values, no matter how small,

' A process is a procedure which generates time series. Each application of
the procedure yields a time series, called a realization of the process.

eventually the two corresponding solutions radically diverge
from each other. It is assumed that the initial conditions are
randomly chosen.

Vanishing of the correlation function ensures that the solu-
tions are truly disordered and diverge from each other never to
return. The “ taffy kneading ” (stretch and fold) character of the
dynamics usuaily supplies this feature (c.g., Berge, Pomeau,
and Vidal 1984, Fig. VIIL8). In the important case that the
correlation function is zero for all nonzero lags, the process is
uncorrelated or “ white ” chaos, in analogy to white noise.

Aperiodicity is important because even for parameter values
which place a system in its chaotic regime, the dynamical equa-
tions have periodic solutions for special initial values which
comprise a set of measure zero. Such highly ordered solutions
are not regarded as chaotic.

Stationarity means roughly that the statistical properties are
independent of time. The explicit representation of the fact that
the dynamical evolution leaves the probability distribution
(often called the invariant measure) unchanged plays an impor-
tant role in chaos theory. The initial conditions satisfy this
same probability distribution.? Thus one cannot separate dis-
order due to the random initial conditions from that due to the
convoluted way in which the past determines the future—they
are manifestations of the same phenomenon, linked together
by stationarity.

Chaotic time series can be generated by solving differential
equations or by iterating return maps derived from the equa-
tions. Some problems (e.g., the evolution of generations of
animals) are inherently discrete in time and the dynamics are
completely represented by a recurrence equation. All examples
in this paper are generated from recurrence equations and time
is taken as discrete.

The goal of this series (Scargle 19814, 1982, and 1988, here-
after respectively Papers I, 11, and III) is to provide analysis

2 In principie the initial conditions can have any distribution. The process
would then be not quite stationary, and one would have to worry about
transients and nonrcpresentative behavior (such as periodicity) for special
initial values.
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Studies in Astronomical Time Series
Analysis V.
Wavelets and the Scalegram

Jeffrey D. Scargle,! David L. Donoho,?
Theoretical Studies Branch, Space Science Division
National Aeronautics and Space Administration, Ames Research Center
Statistics Department, Stanford University

Abstract: This paper is intended to be a practical introduction to the use of wavelet
methods in time series analysis. After introducing the reader to wavelets, with special
emphasis on the Haar wavelet, we review the main uses of the methods for smoothing, .
compressing, and modeling time series data. We define the wavelet analog of the power
spectrum, namely the scalegram. We compute the scalegram of a noisy signal, to show
how it can be corrected for the presence of both additive obervational noise and the
Poisson noise connected with the statistics of photons. We outline a smoothing procedure
that is data-adaptive and should be useful for treating data that has jumps and other
discontinuities. An appendix contains computer code (in FORTRAN and MatLab) for
implementing all of the concepts of the paper: wavelet transforms, scalegrams, inverse
wavelet transforms, and ideal smoothing techniques.

1. NTRODUCTION: WAVELETS FOR TIME SERIES ANALYSIS

The basic use of wavelets is the representation of an arbitrary function of time as
a superposition of elementary functions - much as in Fourier analysis. The main
difference is that the wavelets are localized in time; i.e. they do not extend over
the entire interval, as do Fourier components (sines and cosines).

From a single wavelet shape (sometimes called the analyzing wavelet) one con-
structs an orthogonal basis of functions consisting of many copies of the basic
shape scaled and translated in time. If ¥(¢) is the analyzing wavelet, then the
scaled /translated wavelets are defined as follows:

Psa(t) = 2722270t = I). (1)

where the scale indez s indicates the time-duration of the wavelets. Inspection of
this equation shows that the wavelet width is proportional to

Theoretical Studies Branch, Space Science Division, National Aeronautics and
Space Administration, Ames Research Center
? Department of Statistics, Stanford University
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THE QUASI-PERIODIC OSCILLATIONS
AND VERY-LOW-FREQUENCY NOISE OF

SCORPIUS X-1 AS TRANSIENT CHAOS:
A DRIPPING HANDRAIL?

JEFFREY D. SCARGLE, TOMAS STEIMAN-CAMERON, AND KARL YOUNG!
Theoretical Studies Branch, Space Science Division, MS 245-3
NASA-Ames Research Center, Moffett Field, CA 94035-1000

DAVID L. DONOHO
Department of Statistics, Stanford University, Stanford, CA 94305

JAMES P. CRUTCHFIELD
Santa Fe Institute, 1660 Old Pecos Trail, Suite A, Santa Fe, NM 87501
Physics Department, University of California, Berkeley, CA 94720

AND

JAMES IMAMURA
Institute of Theoretical Science and Department of Physics
University of Oregon, Eugene, OR 97403

Abstract: We present evidence that the quasi-periodic oscillations (QPO) and very low
frequency noise (VLFN) characteristic of many accretion sources are different aspects of the
same physical process. We analyzed a long, high time resolution EXOSAT observation of
the low-mass x-ray binary (LMXB) Sco X-1. The x-ray luminosity varies stochastically on
time scales from milliseconds to hours. The nature of this variability — as quantified with
both power spectrum analysis and a new wavelet technique, the scalegram — agrees well with
the dripping handrail accretion model, a simple dynamical system which exhibits transient chaos.
In this model both the QPO and VLFN are produced by radiation from blobs with a wide
size distribution, resulting from accretion and subsequent diffusion of hot gas, the density of

which is limited by an unspecified instability to lie below a threshold.

subject headings: x-rays: stars - chaotic phenomena - accretion, accretion disks — methods:

data analysis — stars: neutron

! National Research Council Postdoctoral Fellow
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WAVELET SHRINKAGE AND W.V.D.: A 10-MINUTE TOUR

David L. Donoho
Stanford University

1. Introduction

With the rapid development of computerized scientific instruments comes a wide va-
riety of interesting problems for data analysis and signal processing. In fields ranging from
Extragalactic Astronomy to Molecular Spectroscopy to Medical Imaging to Computer
Vision, orie must recover a signal, curve, image, spectrum, or density from incomplete,
indirect, and noisy data.

Recently, it has been shown by the author and his collaborators Iain Johnstone (Stan-
ford), Gérard Kerkyacharian (Amiens), and Dominique Picard (Paris VII) that shrinking
noisy wavelet coefficients via thresholding offers very attractive alternatives to existing
methods of recovering signals from noisy data. Our new methods have theoretical prop-
erties of adaptive minimaxity that far surpass anything previously known. Other groups
bave independently developed methods for de-noising which are also based on wavelet
thresholding in some sense. I think here of Mallat and collaborators (Courant), Coifman
and collaborators (Yale}, and Healy and collaborators (Dartmouth). These other groups
have found that wavelet thresholding methods work well in problems ranging from pho-
tographic image restoration to medical imaging. R.A. DeVore (South Carolina) and B.J.
Lucier (Purdue) have also come to thresholding, motivated by approximation-theoretic
arguments. This agreement of diverse theoretical and empirical work is very encouraging,
and suggests that wavelets will soon have a large impact on how scientists treat noisy data.

In this brief tour, I will only describe the mechanics of some wavelet shrinkage tech-
niques and give examples. Software is available to compute all the displays presented in
this paper; contact the author at donoho@playfair.stanford.edu. In the discussion I
mention work which proves the various theoretical advantages of the new techniques.

Based on presentation at the International Conference on Wavelets and Applications,
Toulouse, France, June, 1992. Supported by NSF DMS 92-09130. With appreciation
to S. Roques and Y. Meyer for patience and encouragement. It is a pleasure to thank
Iain Johnstone with whom many of these theoretical results have been derived, and Carl
Taswell with whom Johnstone and I have developed the software used here.
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Comparison of Temporal Analysis Methods in Search for
Cosmological Time Dilation in Gamma-Ray Bursts

J. P. Norris, Code 668
NASA/GSFC/LHEA/GROSSC, Greenbelt, MD 20771

Cosmic gamma-ray bursts (GRBs) are now the longest standing mystery in
modern astronomy. They have been studied for a quarter century but a
clear indication of their nature is not yet to be established.

Bursters may be a very important astrophysical phenomenon in terms of
energetics -- fluxes can be briefly two to three orders of magnitude
higher than the all-sky background in the low- energy gamma-ray regime
(~ 25 keV - few MeV). No simultaneous detection in another waveband
has been obtained, nor have "interesting” counterparts been found

during post-burst periods (within hours to days) in several arc

minute- sized error regions. The most critical determinant for the

GRB phenomenon, the source distance distribution, is almost completely
unconstrained.

However, recent results (Meegan et al. 1992) from the Burst and
Transient Source Experiment (BATSE) on the Compton Gamma Ray
Observatory have begun to reveal a picture consistent with the

bursters being at cosmological distances. BATSE may be sampling deep
enough to see the effects of non-Euclidean space: The distribution of
more than 500 burst localizations is isotropic to within sampling

error, while the differential { Volume Observed / Volume Observable}
relation indicates that BATSE sees "the edge" of the source
distribution. This combination is most simply explained either by a
nearby (< 1 pc) heliospheric burster distribution, or by a

cosmological one (Z ~ unity). In fact, galactic disk populations are
ruled out, and the extended halo hypothesis is constrained to ever
larger sizes (core radius > 30 kpc) as more BATSE bursts are recorded.

If the cosmological explanation is correct, we must observe time
dilation and redshift. Statistically, the time profiles of the most
distant sources must be dilated -- with "stretch" factor of order
{1+Z} ~ 2 -- relative to those of nearest sources, and their spectra
(below quasi-power-law regime, <~ 100 keV) must appear "redder” by the
same factor. For time dilation, the difficulty set us by Nature is
that durations of bright bursts range over more than four orders of
magnitude (!), clustering in the range ~ 5 - 20 s. Worse, burst
profiles are notoriously complex and varied from burst to burst --
there is no standard temporal profile. In such circumstance, it is
prudent to devise an analysis procedure that utilizes the temporal
information maximally.

We describe four analysis methods for measuring the apparent time
dilation effect (Norris et al. 1993). The most efficient test -- from

an information theoretic standpoint -- completed so far is a wavelet
decomposition of the GRB time profiles. This test indicates that, on
average, dim bursts do have significantly more temporal structure than
bright bursts on all time scales where signal dominates over noise (~

2 s to 64 s). Simulations which calibrate the wavelet test indicate

az



that the dimmest bursts would be at redshifts of order unity -- in
agreement with inferences from the V/Vmax relation -- if in fact the
cause is time dilation (Norris et al. 1993). We compare the results
of this test with those of the other three, which also yield positive
indications.

For all the tests, selection effects arising from intensity

differences (factors up to ~ 300) are removed by rescaling all bursts’
intensities and associated noise biases a uniform level. Because

pulse widths in GRBs are energy-dependent (narrower at higher energy),
spectral redshift is a competing effect which must be addressed in a
(cosmologically) model-dependent manner. Means for ameliorating
various potential pitfalls of these analyses are discussed.

References

"Spatial distribution of gamma-ray bursts observed by BATSE,"
Meegan, C.A, et al. 1992, Nature, 355, p. 143.

Possible Detection of Signature Consistent with Time Dilation in Gamma-Ray
Bursts," Norris, I.P., et al., 1993, Proc. Compton Symp., St. Louis, in press.
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FIG. 1 3, Integral number distribution of 140 bursts as a function of peak
rate. A —3/2 power law is expected for a homogeneous distribution of
sources. The full sky rate is ~800 bursts per year. b, V/V hax distribution
for 140 bursts. The average V/V,,,, is 0.348 + 0.024. A uniform distribution

is expected for a homogeneous d{stgbution of sources.
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Table 1

Model  Author Year Reference Main 2nd Place Description

# Pub Body Body

1. Colgate 1968 CJPhys, 46, S476 ST COS SN shocks stellar surface in distant galaxy

2. Colgate 1974 ApdJ, 187, 333 ST COS Type It SN shock brem, inv Comp scat at stellar surface

3. Stecker et al. 1973 Nature, 245, PS70 ST DISK Steilar superflare from nearby star

4, Stecker et al. 1973 Nature, 245, PS70 WD DISK Supertlare from nearby WD

5. Harwit et al. 1973 ApJ, 186, L37 NS COM DISK Relic comet perturbed to coilide with old galactic NS

6. Lamb et al. 1973 Nature, 246, PSS52 WD ST DISK Accretion onto WD from flare in companion

7. Lamb et al. 1873 Nature, 246, PS52 NS ST DISK Accretion onto NS from flare in companion

8. Lamb et al. 1973 Nature, 246, PSS52 BH ST DISK Accretion onto BH from flare in companion

9. Zwicky 1974 Ap4&SS, 28, i1 NS HALO NS chunk contained by external pressure escapes, explodes
10. Grindlay et al. 1974 ApJ, 187, 193 DG SOL Relativistic iron dust grain up-scatters solar radiation

1. Brecher et al. 1974 ApJ, 187, L97 ST DISK Directed stellar fiares on nearby stars
12. Schiovskii 1974 SovAston, 18, 390 WD COM DISK Comet from system's cloud strikes WD
13. Schiovskii 1974 SovAstron, 18, 390 NS COM DISK Comet from system's cloud strikes NS
14, Bisnovatyi- et al. 1875 Ap&SS, 35, 23 ST COS Absorption of neutrino emission from SN in steiar enveiope
15. Bisnovatyi- et al. 1975 Ap&SS, 35, 23 ST SN COS Thermal emission when small star heated by SN shock wave
16. Bisnovatyi- et al. 1975 Ap&SS, 35, 23 NS COS Ejected matter from NS explodes .

17, Pacini et al. 1874 Nature, 251, 399 NS DISK NS crustal starquake glitch; should time coincide with GRB
18. Narlikar et al. 1974 Nature, 251, 580 WH COS  White hole emits spectrum that softens with ime
19, Tsygan 1975 AS&A, 44, 21 NS HALO NS corequake excites vibrations, changing € & 8 fields
20. Chanmugam 1974 ApJ, 193, L75 WD DISK Convection inside WD with high B field praduces flare
21. Prilutski et al. 1975 ApA&SS, 34, 395 AGN ST COS Collapse of supermassive body in nucleus of active galaxy
22. Narlikar ot al. 1975 Ap4&SS, 35, 321 WH COS WH excites synchrotron emission, inversa Compton scatterin
23. Piran et al. 1975 Nawure, 256, 112 BH DISK inv Comp scat deep in ergosphere of fast rotating, accreting BH
24, Fabian et al. 1976 Ap4SS, 42, 77 NS DISK NS crusiquake shocks NS surface
25. Chanmugan 1976 ApA&SS, 42, 83 WD DISK Magnetic WD suffers MHD instabilities, flares
26. Mullan 1976 ApJ, 208, 199 WO DISK Thermal radiation from flare near magnetic WD
27. Woosley et al. 1976 Nature, 263, 101 NS DISK Carbon detonation from accreted matter onto NS
28. Lamb et al. 1977  ApJ, 217,197 NS DISK Mag gating of accret disk around NS causes sudden accretion
29. Piran et al. 1977 ApJ, 214, 268 BH DISK Instability in accretion onto rapidly rotating BH
30. Dasgupta 1979 Ap4&SS, 63, 517 DG SOL Charged intergal rel dust grain enters sol sys, breaks up
31. Tsygan 1980 AS&A, 87, 224 WD DISK WD surface nuclear burst causes chromospheric faras
32. Tsygan 1980 AG&A, 87, 224 NS DISK NS surface nuclear burst causes chromospheric flares
33. Ramaty et al. 1981 Ap&SS, 75, 193 NS DISK NS vibrations heat atm to pair produce, annihilate, synch cool
34. Newman st ai. 1980 ApJ, 242, 319 NS AST DISK Asteroid from interstellar medium hits NS
3s. Ramaty et al. 1980 Nature, 287, 122 NS HALO NS core quake caused by phase transition, vibrations
36. Howard et al. 1881 ApJ, 249, 302 NS AST  DISK Asteroid hits NS, B-fisld confines mass, creates high temp
37. Mivofanov et al. 1981 Ap&SS, 77, 469 NS DISK Helium flash cooled b{ MHD wavas in NS outer layers
38. Colgate et al. 1981 ApJ, 248, 771 NS AST DISK Asteroid hits NS, tidally disrupts, heated, expelled along B lines
38. van Buren 1981 ApJ, 249, 297 NS AST DISK Asteroid enters NS B fieid, dragged to surface collision
40. Kuznetsov 1882 CosRes, 20, 72 MG SOL  Magnetic reconnection at heliopause
41, Kaz 1982 Apd, 260, 371 NS DISK NS flares from pair plasma confined in NS magnetosphere
42. Woosley et al. 1882 Apd, 258, 716 NS DISK Magnetic reconnection atter NS surface He flash
43, Fryxali et al. 1982 ApJ, 258, 733 NS DISK He fusion runaway on NS B-pole helium iake
44, Hameury et al. 1982 AS&A, 1M1, 242 NS DISK e- capture triggers H flash triggers He flagh on NS surface
45, Mitrofanov etal. 1982 MNRAS, 200, 1033 NS DISK B induced cydo res in rad absorp giving rei e-s, inv C scat
46. Fenimore et al. 1982 Natre, 297, 665 NS DISK BB X-rays inv Comp scat by hottar overlying plasma
47. Lipunov et al. 1982 ApAaSS, 85, 459 NS ISM DISK ISM matter accum at NS magnetopause then suddenly accretes
48. Baan 1982 ApJ, 261, L71 WD HALO Nonexplosive collapse of WD into rotating, cooling N
49, Ventura et al. 1983 Nature, 301, 491 NS ST DISK NS accretion from low mass binary companion
50. Bisnovatyi- et al. 1983 Ap&SS, 89, 447 NS BISK Neutron rich elements to NS surface with quake, undergo fission
51. Bisnovatyi- et al. 1884 SovAstron, 28, 62 NS DISK Thermonuclear explosion beneath NS surface
52. Ellison et al. 1983 AS8A, 128, 102 NS HALO NS corequake + uneven heating yield SGR pulsations
53. Hameury et al. 1983 AB&A, 128, 369 NS DISK B field contains matter on NS cap allowing fusion
54. Bonazzola et al. 1984 ARA, 136, 89 NS DISK NS surface nuc explosion causes small scale B reconnection
55. chel 1985 ApJ, 290, 721 NS DISK Remnant disk ionization instability causes sudden accretion
56. Liang 1984 ApJ, 283, L21 NS DISK Resonant EM absorp during magnetic flare gives hot synch e-s
57. Liang et al. 1984 Nature, 310, 121 NS DISK NS magnetic fields get twisted, recombine, create flare
58. Mitrofanov 1984 ApA&SS, 105, 245 NS DISK NS magnetosphere excited bn starquake
59, Epstein 1985 CPJ 291, 822 NS DISK Accretion instability between NS and disk
60. Schiovskii et al. 1985 NRAS, 212, 545 NS HALO Old NS in Galactic halo undergoes starquake
81. Tsygan 1984 Ap4SS, 106, 199 NS DISK Weak B field NS spherically accretes, Comptonizes X-rays
62. Usov 1884 Ap&SS, 107, 191 NS DISK NS flares result of magnetic convective-oscillation instability
63. Hameury et al. 1985 ApJ, 293, 56 NS DISK High Landau e-s beamed along B lines in cold atm. of NS
64. Rappaport et al. 1985 Nature, 314, 242 NS DISK NS + low mass stellar companion gives GRB + optical flash
65. Tremaine et al. 1986 ApJ, 301, 155 NS COM DISK NS tides disrupt comaet, debris hits NS next pass
66. Musiimov et al. 1986 ApA&SS, 120, 27 NS HALO Radially oscillating NS
67. Sturrock 1986 Nature, 321, 47 NS DISK Flare in the magnetosphere of NS accelerates e-s aiong B-field
68. Paczynski 1986 ApJ, 308, L43 NS COS Cosmo GRBs: rel e+/- opt thk plasma outflow indicat
69. Bisnovatyi- et al. 19868 SovAstron, 30, 582 NS DISK Chain fission of superheavy nuclei below NS surface during SN
70. Alcock et al. 1986 PRL, 57, 2088 SS S8 DISK SN ejects strange mat lump craters rotating SS companion
7. Vahai et al. 1888 AB&A, 207, 55 ST DISK Ma%nelimlly active stellar system gives stellar flare
72. Babul et al. 1987 ApJ, 316, L49 cS COS  GRB result of enerﬁy released from cusp of cosmic string
73. Livio et al. 1987 Nature, 327, 398 NS COM DISK OQort cloud around NS can explain soft gamma-repeaters ]
74. McBreen et al. 1988 Nature, 332, 234 GAL AGN OS G-wave bkgrd makes BL Lac wiggle across ‘agbalaxy lens caustic
75. Curtis 1988 ApJ, 327, L81 WD COS WD collapsss, burns to form new class of stable particies
76. Melia 1988 ApJ, 335, 965 NS DISK BesX-ray binary sys evolves to NS accretion with recurrence
77. Ruderman etal. 1988 ApJ, 335, 306 NS DISK e+/- cascades ?f aligned pulsar outer-mag-sphere reignition
78. Paczynski 1988 ApJ, 335, 525 cS COS Enaergy released from cusp of cosmic string (revised)
79. Murikami et al. 1988 Nature, 335, 234 NS DISK Absorption features suggest separats colder region near NS
80. Melia 1988 Nature, 336, 658 NS DISK NS + accretion disk reflection explains GRB spectra
81. Blaes et al. 1988 ApJ, 343, 839 NS DISK NS saismic waves couple to magnetospheric Alfen waves
82. Trofimenko etal. 1989 ApA&SS, 152, 105 WH COS Kerr-Newman white holes
83. Sturrock et al. 1989 ApJ, 346, 950 NS DISK NS E- field accelerates electrons which then pair cascade
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WD
COM

NS

COoM
ISM

MBR
COoM

Narrow absorption features indicate small cold area on NS
Binary member loses part of crust, through L1, hits primary
Fast NS though Qort clouds, fast WD bursts only optical
Episodic electrostatic accel and Comp scat from rot high-B NSs
Different types of white, *grey" holes can emit GRB

NS - NS binary members collide, coalesce

Céclo res & Raman scat fits 20, 40 keV dips, magnetized NS
QED mag resonant opacity in NS atmosphere

NS magnetospheric plasma oscillations

Beaming of radiation necessary from magnetized neutron stars
Interstellar comets pass through dead pulsar's magnetosphers
Compton scattering in strong NS magnetic field

Old NS accretes from ISM, surface goes nuclear

NS-NS callision causes v collisions to drive super-Ed wind
Scattering of microwave background photons by rel e-s

Young NS drifts through its own Qort cloud

White hole supernova gave simul burst of g-waves from 1987A
NS B- field undergoes resistive tearing, accelerates plasma
Alfen waves in non-uniform NS atmosphere accslerate particles
Strange stars emit binding ensr?‘y in grav. rad. and collide
Slow interstellar accretion onto NS, e- capiure starquakes result
Low mass X-ray binary evoivas into GRB sites

Accreting WD collapses to NS

WD accretes to form naked NS, GRBs, cosmic rays

NS - Rlanet magnetospharic interaction unstable

NS - NS coilision produces anisotropic fireball

Normai stars tidally disrupted by galactic nucteus BH

WD collapses to form NS, B-field brakes NS rotation instantly
NS - NS merger gives optically thick fireball

BH-NS merger gives optcally thick firaball

Synchrotron emission from AGN jets

BH-NS have vs collide 1o ys in clean fireball

NS-NS have vs collide to ys in clean fireball

Primordial BHs evaporating could account for short hard GRBs
Relativistic fireball reconverted 1o radiation when hits ISM

A mostly complete list of refereed papers on possible physical
models for the gamma-ray burst phenomenon. Does not include
papers treating only radiation transfer, nor unrefereed conference

papers.

Seventh column indicates scale of GRB origin:
COS = cosmological (metagalactic, ~ Gigaparsecs); DISK = galactic
disk (~ 100 parsecs); HALO = galactic halo (~ tens of kiloparsecs);

SOL

solar environs (< 1 parsec).

Note preference for

cosmological scenarios, previously eschewed, after appearance of
BATSE results on isotropy, source density inhomogeneity (late

1991)!

More than 100 combinatorial possibilities have been explored!

From: "A 'Century' of Gamma-Ray Burst Models", R.J. Nemiroff,
Comments on Astrophysics, 1993, in press.
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THE WHAT, WHY, AND HOW OF WAVELETS 15
(a) 2
OMeyer | | Vieyer
1
0
0
: -1
5 0 5 -5 0 S
(b) 1.5 - 2
1 LT Ve, 1
1
0.5
0 0
-0.5 -1
-5 0 5 -5 0 5
(c)
! ®eL3 1 VeLa
0.5
0
0
0.5 -1
-5 0 S -5 0 S5
(d)
1 Orizar 1 YHaar
0
0 -1
0 1 0 1
(e) 2 2
1 2% 1 - 2V
0 0
-1 . -1
2 -2
-1 0 1 2 -1 0 1 2
1) 2
¢ v
1 1
0 0 '
-1
-5 0 5 -5 0 5

F1G. 1.8. Some ezamples of orthonormal wavelet bases. For every ¥ in this figure, the

}amily i k() = 273/29(2- 9z — k), j,k € Z, constitutes an orthonormal basis of L2(R). The
J’

Jugure plots ¢ (the associated sc.liag function) and ¢ for different constructions which we will
encounter in later chapters. (a) The Meyer wavelets; (b) and (c) Battle—Lemarié wavelets;
(d) the Haar wavelet; () the next member of the family of compactly supported wavelets, 2v;
(f) another compactly supported wavelet, with less asymmetry.
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Kinematic vs. Cosmological Time Dilation

The redshifting of galaxies is the result of the mathematics that
define Friedman Robertson Walker (FRW) cosmologies. One can
interpret this redshift wholly kinematically as the recession velocities
of galaxies, but this picture is incomplete. In a real sense, however,
these galaxies are moving away from us - you can fit more and more
meter sticks between us and them as time goes by. These galaxies,
however, live in a younger denser unmiverse, where time runs slower,
and light must climb out of a gravititation well to get from them to
us — all of which gets convolved into the one measurement we call
redshift.

If one were to hypothesize a completely Newtonian (but special
relativistic) universe where recession velocity was all there was, one
would find that this universe contains paradoxes that are not well
explained (for example: gravitational collapse calculations assume no
mass at infinity — which is not upheld in this Newtonian + SR
universe). Einstein found the best way yet to staple gravity and SR
together — (it took him years and many false starts) and the result
was GR and the immediate result of that was FRW cosmologies. Can
anyone completely visualize the reasons for GR and FRW cosmology?
— not completely. As R. Feynman once said — there is no complete
understanding of gravity beyond the mathematical form.

But even if GR is wrong and recessional velocity reigns supreme, you
would STILL get a time dilation. In this case it is just the Doppler
shift of a recessional velocity. In my opinion, time dilation is based
on more sound measurements (QSO redshifts of spectral lines, for
example) than the whole of GR theory itself. Our measurement of
time dilation is, however, the first explicit measurement of this
dilation, as the others are all based on spectral lines.

— Bob (Nemiroff)
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Concept Formation in Temporally

Structured Domains

Wayne Iba
April 8, 1993

Introduction

Unsupervised learning, or concept formation, is an important area of machine learning. In this
work, unlabeled data is presented to a concept formation system, and the system must form
concepts, or classes, that best characterize the observed data. Although unsupervised learning
mechanisms do not require class labels, many of these methods have been successfully applied to
supervised learning tasks. In general, the concept formation system can take advantage of a class
label when it is available, but is not dependent on the presence of such a label.

Most previous concept formation systems have been designed to address data and domains
where instances are represented as a simple set of attribute-value pairs. However, many domains
of practical interest contain relationships ~ particularly temporal relationships. Such temporally
structured domains require special techniques to form useful concepts from unlabeled data. We
have developed OxBOW, an unsupervised learning system that addresses domains where time, or
change, is a critical characteristic.

Summary of the Approach

The approach adopted in OXBOW assumes that instances consist of a series of state descrip-
tions over time, where each state description is represented in the traditional form (i.e., a set of
attribute-value pairs). The system consists of two separate modules, a parser and a classifier. The
parser takes the time-sequence of attribute values and finds significant break points as indicated
by discontinuities in the first or second derivatives of an attribute. The output of the parser is
usually a subsequence of the states present in the input, but where the states correspond to the
changes observed in the temporal data.

This parsed structure is then processed by the classifier. The job of the classifier is to identify
the best match of this instance to the classes it has constructed from all previous data. Intuitively,
the sequence of significant states should be characteristic of similar instances observed in the past,
and should guide the system to select the appropriate concept. In addition to finding the best
match, the classifier must also determine how to update its knowledge base in response to the
current data. In some cases, such as when a previously unobserved event has been presented,
the system must decide to create an entirely new class of unlabeled events. That is, in order
to maintain high classification accuracy, the classifier must continually update its knowledge in
response to newly acquired data. The evaluation function used to guide OXBOW to a useful set
of concepts and to the “best” match for a test instance is based on Gluck and Corter’s category
utility measure and attempts to trade off the ability of a class to predict any particular attribute,
and the ability of any given attribute to predict the class.

Evaluation Methodology and Results

We developed and extensively tested an earlier version of OXBOW in the domain of recognizing
jointed limb movements and handwritten letters. A new version has been implemented for rec-
ognizing the initiation of events on the shuttle’s power bus. The previous results on recognizing

\4O



handwritten letters were quite encouraging and preliminary results on the power bus domain
appear positive as well.

Experimental design

Our first empirical evaluation of the revised OxBOW used a set of 36 signatures characterizing
electrical events on a three-phase power bus from shuttle telemetry. The 36 signatures were
selected from the startup events of six different components on the shuttle. However, the number
of examples of each type were not uniform; one of the signature types had only three examples
and the most frequent had eight. A signature for an event consists of current data (measured in
amps) for the three electrical phases during the initial six seconds of a component’s operation.

This experiment ignored each signature’s type for purposes of classification, and used it only
for evaluation purposes. We performed a cross-validation study with this data set by training the
system on 35 of the signatures and testing OxBow’s classification on the remaining signature.
We did this for each of the 36 signatures so that every signature was individually removed from
the training set and tested in turn. The training set of 35 signatures was randomly sampled
without replacement during learning. We determined the accuracy of a signature’s classification
by comparing its type to the set of signature types stored at the concept in memory where OxBow
would have stored the test signature. The fraction of signatures whose types matched the test
instance was used as the accuracy score. So, we maintained information about the signature types
even though the learning system did not have access to this information.

Preliminary results

The results indicate an average classification accuracy of 91.7% (three mis-classifications) over
this data set. This experiment used all six seconds of data from each signature. In a second
experiment, we used a shorter portion of each signature during training and testing by trimming
the set of signatures to an average length of 0.975 seconds. (The details of our trimming method
are beyond the present scope.)

A similar cross-validation study showed classification accuracy to fall to 70.7% in this condition
where less data was used. For our data set, the strategy of guessing the most frequent signature
would yield 22% accuracy. Although overall accuracy was significantly lower, this second condition
revealed that OxBow could frequently make accurate classifications using relatively little data.
We expect that these preliminary results represent lower bounds as we make modifications to the
system so that it will include the signature type information during training. There are several
other modifications that can be made to tune OxBOW more carefully to this domain.

Conclusion

There are three primary areas of promise for OxBow. First, it is especially useful in domains
where an unknown and potentially large number of different concepts must be discriminated. Sec-
ond, the system can accomplish this task even when a small percentage of the data is actually
labeled. Last, OxBow provides a relatively general mechanism that can function effectively in
many different temporally structured domains. On the down side, this approach is rather expen-
sive computationally, and the final predictive accuracy may not exceed that of a special purpose
approach. However, all results to date have suggested that OXBow could play an integral role in
temporal recognition tasks.

Lt



Concept Formation in Temporally

Structured Domains

Wayne Iba
REcOM Technologies
Artificial Intelligence Research Branch
MS 269-2, NASA Ames Reserch Center
Moftett Field, CA 94035
email: IBA@QPTOLEMY.ARC.NASA.GOV

Thanks to:
Kevin Thompson
John Allen
Phil Laird
Ron Saul
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Introduction

What is the problem?
Accurately classify temporal events of interest based on previous

exposure to similar events

What is the approach?
Concept formation — the incremental unsupervised acquisition of

a classification scheme over a data stream

o why unsupervised learning?

What is accomplished?
Promising classification accuracy without supervised training

\4>
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The OxBow System

We developed OXBOW to represent, acquire, and recognize classes
of jointed limb movements.

o extended to generic temporal event recognition

temperal cencept temporal predicts
oW datq P _ = P _ m‘><7r' .Pe_c_ on
signatures parser fermation classficaticn

|
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Parsing Temporal Events with Oxpow

Input format:

((tl) Al)a (tQ, A2)a ) (tna An))

where

Ai = [attl, attg, ceey attk]

The parser extracts first and second derivatives for the attributes and
creates sequence states according to zero-crossings detected.

Parsed output format:
((t, A, Ay), . (8, AL A )

for j < n

e



Concept Formation with OxBow

Our system is based on Fisher’s COBWEB, a robust and accurate
concept formation system.

o probabilistic concepts organized hierarchically
o performance and learning mechanisms identical

e events represented as temporal structures

Given a new instance and a concept in the hierarchy:

1. Find the best match of the new instance to the concepts stored at
the current level of the hierarchy

2. Compute the score for creating a new class containing only the
new Instance

3. Unless creating a new class, recursively classify the new instance
in the hierarchy below the best class.

A
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Preliminary Evaluation

Domain: thirty-six labeled electrical events from a three-phase power
bus on the shuttle

o si1x different devices

o three amperage values at 0.1 sec. intervals over six secs.

Experimental design: cross-validation study testing a single instance
at a time in two condtions:

o complete data: full six seconds of data

o partial data: events truncated to average of 0.975 seconds

G



Preliminary Results

Complete Data | Partial Data | Most Frequent

Accuracy 91.7% 70.7% 22.2%

cabfan | rers | galfan | vac | wes | phot
cabfan 2 1
ICTS 8
galfan 7
vac 6
WCs
phot 0.66 1 0.33| 3




Future Work

¢ Include signature type information in training data
e Tuning for a given domain
o Efficiency of learning and classification

Extend to handle abnormal events



Conclusions

A concept formation approach, such as developed in OXBOW, has
several advantages and disadvantages:

e Pros

o generality to a variety of temporal domains
o scalable to a large number of concepts

o may discover classes of abnormal events or interesting sub-
classes

e Cons
o accuracy needs to be higher

o implemented in Lisp and currently computationally unwieldy

\S 2



Methodological Issues Raised

Preliminary exposure to this domain suggested several important
issues relevant to future testing:

e quality of the training data
o quality of the testing data

o quality of the controllers

\S3



Results of the Santa Fe Time Series Competition

Andreas Weigend

Xerox PARC and
University of Colorado at Boulder

Most observational disciplines, including physics, biology and finance,

try to infer properties of an unfamiliar system from the analysis of a
measured time record of its behavior. There are mature techniques
associated with traditional time series analysis. During the last

decade, new approaches such as neural networks have emerged, promising
results and insights not available with standard methods. However, the
evaluation of this promise has been difficult. Adequate benchmarks were
lacking, and most of the literature has been fragmentary and anecdotal.

Global computer networks enabled disjoint communities to attack these
problems through the widespread exchange of data and information. In
order to foster this process, we organized the "Time Series Prediction
and Analysis Competition" under the auspices of the Santa Fe Institute
during the fall of 1991. With the assistance of an advisory board from
the relevant disciplines, we selected (and made generally available)

a group of data sets that cover a broad range of interesting attributes.

* A clean physics laboratory experiment (NH_3 laser).

Physiological data from a patient with sleep apnea.

Tick-by-tick currency exchange rate data (Swiss Franc--US Dollar).
* A computer generated series designed for this competition.

* Astrophysical data from a variable white dwarf star.

J S Bach’s final (unfinished) fugue from "Die Kunst der Fuge."

* *

*

The participants in the competition were asked to submit:

* Forecasts of the continuation of the data sets (that were withheld).

* Analyses of properties such as the number of degrees of freedom, the
noise characteristics, and the nonlinearity of the system.

* Models of the governing equations.

* Descriptions of the algorithms employed.

In this talk, I will motivate our choice of the data sets, present some of
the results of the competition, and close with some thoughts on the inter-
play between learning time series and characterizing dynamical systems.

(Joint work with Neil Gershenfeld, MIT)

'S4



The Future of Time Series:
Learning and Understanding

Neil A. Gershenfeld Andreas S. Weigend~
MIT Media Laboratory Xerox PARC
20 Ames Street 3333 Coyote Hill Road
Cambridge, MA 02139, USA Palo Alto, CA 94304, USA
neilg@media.mit .edu weigend@cs .colorado.edu

(This version: May 25, 1993)

Abstract. The use of a measured time series to characterize the nature of an observed system and to
model its future behavior arises throughout scientific research. There are a number of new approaches to
this very old problem that promise insights unavailable with traditional approaches, however in practice
the application of techniques such as state-space reconstruction and neural networks has been hampered
by results that can be unreliable and by the difficulty of relating their performance to that of mature
algorithms. This article reports on a time series competition that was recently run through the Santa Fe
Institute in order to bring together researchers from a range of relevant disciplines to help make meaningful
comparisons between their approaches by analyzing common data sets. The design and results of the
competition will be described, and the necessary theoretical and historical background to understand the
successful entries will be reviewed.

THIS IS A DRAFT. THE FINAL VERSION IS TO APPEAR IN: Predicting the Future and Understanding the Past: a
Comparison of Approaches (Proceedings of thc NATO Advanced Research Workshop on Time Series Analysis and
Forecasting, held in Santa Fe, New Mexico, May 14-17, 1992.) Edited by Andreas S. Weigend and Neil A. Gershenfeld
(Reading, MA: Addison-Wesley, 1993).

* Address after August 1993:
Department of Computer Science and Institute of Cognitive Science,
University of Colorado, Boulder, CO 80309-0430, USA.
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THESANTAFE
TIME SERIES COMPETITION

Andreas S. Weigend
Neil A. Gershenfeld

e Santa Fe Institute
 Stanford (ASW)
 Harvard (NAG)

 MIT Media Lab (NAG)
e Xerox PARC (ASW)

Address after July 1993:
‘Andreas Weigend

Computer Science Department
University of Colorado at Boulder

E-mail: weigend@cs.colorado.edu




OVERVIEW

a Time Series

e From linear to nonlinear paradigm

e Understanding
— From Yule to embedding

* Learning
— Emulate unknown structure
— Generalization vs memorization

a SFI Results: Prediction

* Filtered embedding (Saver)
e Neural network (Wan)
« Hidden Markov model (Fraser)

- SFI Resulis: Characterization

e Direct vs indirect (via prediction)

0 The Future

\S %




INTRODUCTION- -

Three problems

0 predicf

e short-term forecasts

0 model

e long-term behqvior

trajectory, attractor
differential equations

a characterize

 fundamental properties

amount of noise
degrees of freedom

Complementarity of
understanding and learning

\SA




PARADIGM CHANGES

1. pre—=1920’s:

Q global fit in fime

2. 1920's to 1980’s:

0 linear modeling and prediction

+ superposition, easily understood
— qualitative behavior limited
— similar spectra from different systems

3. post-1980's:

@ nonlinear paradigm

computer simulation of nonlinear systems
automatic data acquisition
machine learning

L0




SFI COMPETITION

0 Set-up |
e August 1991: Data on server
e January 1992: - Deadline

0 What happened?

 more than 1000 pebple fip'ed data
e about 40 submitted predictions

Q Follow-up

e May 1992: NATO Workshop
e July 1993: Book (A-W)

o Data remain available
anonymous fip fo

- ftp.santafe.edu

o\




UNDERSTANDING <> LEARNING

Q Understanding

perspective: low dimensional DEQ's
— Embedology vs Yule

dimension of manifold

stochastic vs deterministic world view
Progess: recognize/characterize geometry

Q Learning

perspective: search in function space
emulate unknown structure
strong vs weak models

Progress: learning <> understanding

a Generalization vs Memorization

perspective: large model spaces

good: more flexible

bad: problem of overfitting
Progess: model selection

Wl




PREDICTIONS

» LASER DATA SET (A: 1,000 points)

Smart embedding;

Q filtered delay coordinates—

(Tim Saver, George Mason U)

Smart function agproximaﬁon:

a connectionist network
(Eric Wan, Stanford U)

o SYNTHETIC DATA (D: 100,000 points)

Smart estimation of prediction errors:

0 hidden Markov model
(Andy Fraser, Portland State U)

\ 3



NEURAL NETWORKS

Wan's architecture: 1-12-12-1

replaces ech connection by a delay line
(25, 5, 5 lags)

1105 parameters: a puzzle¢

neural networks:

limit number of features

but allow arbitrary nonlinearities
iterative method: implicit regularizer
early stopping / cross validation

vs''traditional” statistics:
limit order of interactions

Lot




HIDDEN MARKOV MODEL

Fraser and Dimitriadis

20-state model

local linear autor_egressive filters of
8th order |

4.5 fransitions on average from each
state

6,000 parameters

VLS




CHARACTERIZATION

Direct

Q Redundancy:

Incremental mutual information as
function of embedding dimension

Indirect (via prediction)

characterize by analysis of
performance

temporal structure in residual errors?
time reversal
surrogate data

o DVS modeling

0 Connectionist

\ Lelo




CHARACTERIZATION
VIA PREDICTION

a Connectionist models

« test error (out of sample error)
as function of number of hidden units

use regularizer in training

o effective dimension of hidden units |
~ from eigenvalue spectrum of hidden units

a DVS models
 test-error (out of sample error)
as function of number of neighbors

construct family of local linear models
with size of neighborhood as parameter
(extremes: local look-up — global linear)
plot out-of-sample error |

- “Deterministic vs Stochastic Plots’

\e'1




REFERENCE -« - -

Predicting the Future and
Understanding the Past:

A Comparison of Approaches

A.S.Weigend and N.A.Gershenfeld, eds
SFl Studies in the Sciences of Complexity
. _Addison-Wesley, Summer 1993.

Order number 62602 (pb), 62601 (hc)
(Addison-Wesley: 1-800-447-2226)

Andreas Weigend
Xerox PARC and CU Boulder

weligend@cs.colorado.edu

The data sets as well as programs and
analyses are available via anonymous
ftp at

ftp.santafe.edu

Vo3



Weigend and Gershenfeld Predicting the Future and Understanding the Past

Title: Predicting the PFuture and Understanding the Paat:
a Comparison of Approaches

Proceedings of the NATO Advanced Research Workshop

on Time Series Analysis and Forecasting
held in Santa Pe, New Mexico, May 14-17, 1992.

Editors: Andreas S. Weigend and Neil A. Gershenfeld

Series: Santa Pe Institute
Studies in the Sciences of Complexity

Publigher: Addison-Wesley, June 1993.
Backorder: Call A-W Order Department at 1-800-447-2226.
Order numbers: 62601 (hardcover), 62602 (pbk).

Summary. This book presents a multi-disciplinary view of the state of the art in the
areas of prediction and analysis of temporal sequences. Different methods to forecasting
and characterization of time series are compared and contrasted in a comprehensive
overview chapter by the editors. Details of these approaches, such as connectionist
networks, surrogate data and filtered delay coordinates, are then explained by the
individual researchers. All techniques are applied to a few carefully selected benchmark
time series.

Why this book?

Most observational disciplines, including physics, biology and finance, try to infer prop-
erties of an unfamiliar system from the analysis of a measured time record of its behavior.
There are mature techniques associated with traditional time series analysis. During the

(page 1)
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Weigend and Gershenfeld Predicting the Future and Understanding the Past

last decade, new approaches such as neural networks have emerged, promising insights
not available with these standard methods. However, the evaluation of this promise has
been difficult. Adequate benchmarks were lacking, and most of the literature has been
fragmentary and anecdotal.

Global computer networks enabled these disjoint communities to attack these problems
through the widespread exchange of data and information. In order to foster this
process, the editors organized the Time Series Prediction and Analysis Competition under
the auspices of the Santa Fe Institute during the fall of 1991. With the assistance of
an advisory board from the relevant disciplines, they selected a group of data sets that
cover a broad range of interesting attributes:

o Tick-by-tick currency exchange rate data (Swiss Franc — US Dollar).
Physiological data from a patient with sleep apnea.
¢ Astrophysical data from a variable white dwarf star.

L ]

A clean physics laboratory experiment (NH j3 laser).
* A computer generated series designed for this competition.
¢ ]. 5. Bach’s last (unfinished) fugue from Die Kunst der Fuge.

The data was made generally available at £tp . santafe. edu (and will remain publicly
accessible there). The participants in the competition were asked to submit:

e Forecasts of the continuation of the data sets (that were withheld).

Analyses of properties such as the number of degrees of freedom, the noise charac-
teristics, or the nonlinearity of the system.

Models of the governing equations.
Descriptions of the algorithms employed.

In order to explore the results of the contest, the editors organized a NATO Advanced
Research Workshop in the spring of 1992. Workshop participants included members of the
advisory board, representatives of the groups that had collected the data, participants
in the contest, and some interested observers. Although the participants came from a
broad range of disciplines, the discussions were framed by the analysis of common data
sets and hence it was usually possible to find a meaningful common ground.

This volume now presents the results of both the competition and the workshop. One
of its strengths is its focus on a common set of problems tackled by a variety of different
methods.

(page 2)
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Contents

The volume consists of three parts:

1. Overview. In the first part, the editors present the results of the competition
and the workshop and analyze the advantages and disadvantages of the various
techniques both in time series prediction and in characterization. In the area of
prediction, recurring themes include the importance for careful assessments of the
statistical reliability of the results, and the need to match the level of description
of the model to the system being studied (from deterministic low-dimensional dy-
namics to stochastic processes).

In the area of characterization, several techniques are presented that try to estimate
the number of degrees of freedom of the system or the rate at which the system loses
memory of its state. A common feature here is the desire to reduce the sensitivity
to geometrical artifacts abundant in standard methods (such as correlation dimen-
sions and Lyapunov exponents). The methods discussed include information-based
measures as well as estimators based on evaluating the reliability of the embedding.

2. Details. In the central part, fifteen scientists who applied their methods to the
data, motivate and describe their ideas in individual chapters. Although from
a wide variety of different disciplines (statistics, experimental and computational
physics, electrical and mechanical engineering, economics and finance, biology and
medicine, musicology and others), all contributors focus on the same sets of data.
Their strictly refereed contributions are as self-contained as possible.

3. Data. In the third part, the scientists who contributed the time series describe
the scientific questions behind their data and the kinds of models typical in their
home disciplines. They then analyze their data with the current methods in their
respective fields, and finally gauge what they have learned from the new techniques
that were applied to their data in the competition and at the workshop.

The book also explores the relationship between time series methods and the analysis
of spatio-temporal problems (there appear to be natural connections, such as the use
of spatial analogs of time-delay embedding). It closes with some thoughts pointing
towards the future of prediction by the scientific advisors to the project.

Outlook_

This volume is a valuable timely contribution to the rapidly growing field of nonlinear
time series analysis. It contains the results of the most rigorous comparison of different
methods to time series prediction-if not to machine learning in generai-to date. This

(page 3)
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Weigend and Gershenfeld Predicting the Future and Understanding the Past

breadth and competence was achieved through the high-profile Time Series Prediction
and Analysis Competition at the Santa Fe Institute and the subsequent NATO Advanced
Research Workshop that brought together an international group of time series experts
from a wide variety of fields. This volume will serve as a unique muiti-disciplinary
reference of the present state of analyzing and forecasting time series.

Editors

Andreas Weigend received his PhD from Stanford University and was a postdoc at Xerox
PARC (Palo Alto Research Center). He is Assistant Professor in the Computer Science
Department and Institute of Cognitive Science at the University of Colorado at Boulder.

Neil Gershenfeld received his PhD from Cornell University and was a Junior Fellow at
Harvard University. He is Assistant Professor in the Physics Department and Media
Lab at MIT.

Address for correspondence:

Andreas Weigend

Xerox PARC phone: (415) 8124765
3333 Coyote Hill Rd fax: (415) 812-4334
Palo Alto, CA 94304 email: weigend@cs.colorado.edu

(page 4)
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Shallow and Deep Knowledge Techniques for
Diagnosis of Time-dependent Data

Steve A. Chien, Nicolas F. Rouquette,
Leonard K. Charest, Jr., and E. Jay Wyatt

Jet Propulsion Laboratory
California Institute of Technology

Increasing complexity of complex process control applications have

posed difficult problems in fault detection, isolation, and recovery

(FDIR). Shallow and deep knowledge-based diagnosis techniques from
Artificial Intelligence offer some promise in addressing the problems.
Shallow knowledge techniques rely on large amounts of data/examples to
characterize the behavior space. In contrast, deep models require
well-understood behavioral models of the components in the target
system. In order to support Space Station Freedom (SSF) design and
testbed activities, we have developed shallow and deep-level diagnosis
models for SSF systems from the Environmental Control and Life Support
System (ECLSS) and the External Active Thermal Control System (EATCS).

In the shallow knowledge diagnosis system, classified examples of
faults are used as training data for a decision tree induction system.
In order to deal with the complexity that faults can occur at various
times within the sensor polling cycle, the input data is processed to
contain examples of all possible fault/sensor poll sychronizations.

The deep knowledge diagnosis technique is an extension of classical
model-based diagnosis techniques to deal with sparse data, noise, and
complex non-invertable numerical models. In this approach, a two
phased approach to diagnosis is used. In the first phase, an

extension of constraint suspension is used to generate a set of
candidate component faults. In the second phase, a generalized
simulation is used to determine which of the remaining candidate
faults best matches the observed data. Because the steps are ordered
in terms of d=ecreasing robustness, in the event of a novel, unforseen
fault, operators can fall back upon candidate sets from earlier phases
of diagnosis.

\13
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Neural Networks for Prediction
Claudia Meyer,
NASA Lewis

Sensors fail at a much higher rate than any other component
on the SSME. Failures of redlined sensors have been responsible
for premature engine cutoffs during ground test firings and
flight. Also, as advanced safety algorithms are developed and
tested, validation of a large number of performance sensors has
become necessary. Sensor validation is also a vital component of
an automated post-test diagnostic system since failed sensors
must be identified before engine health assessments can be made.

Toward this end, NASA LeRC has been leading efforts in the
SSME sensor validation area. We have focussed on analytical
redundancy, a technique in which a sensor’s value is predicted by
using other sensor values and known relations among the sensor
values. The sensors and the set of relations among them define a
network. A methodology for fusing or combining the evidence from
the sensors and relations in a network has been developed under
contract using Bayesian probability theory.

The greatest challenge in building these networks has been
the development of analytical redundancy relationships which are
valid over a large number of engines on all three test stands at
Stennis. Three analytical redundancy approaches have been
considered: characteristic equations, empirical correlations
and neural networks. The characteristic equations and empirical
correlations are being developed under contract, while the neural
network activity has been in-house. Neural networks are well-
suited for approximating complex nonlinear systems and can
uniformly approximate any continuous function. Feedforward
neural networks with one and two hidden layers have been used to
predict various critical parameters during both the startup
transient and mainstage operation of the engine. Time windows of
data from related parameters have been used as network inputs.
These networks were trained on data from nominal firings of one
engine and validated using data from other nominal firings of the
same engine. Good prediction accuracy was achieved. The behav-
ior of the mainstage networks in the event of a hard input sensor
failure has been characterized. Good prediction accuracy can be
maintained when a synthesized value of the failed input is
substituted for the faulty sensor.

One of the problems associated with mainstage training is
the large amount of test data that is available for each test
firing (more than 12000 patterns for a typical 500 sec duration
test firing). Methods for reducing the number of patterns are
currently being investigated. One approach involves the use of
learning vector quantization for data compression. The other
approach involves orthogonal least squares methods which are
often used in conjunction with radial basis function networks.

Another interesting aspect of this project has been the use
of genetic algorithms to select the inputs to a neural network
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function approximator. This input selection technique has been
of particular interest since it could suggest sensor placement on
future engines for analytical redundancy of critical parameters,
in addition to generating an optimal or near-optimal set of
inputs for a critical parameter within an existing sensor suite.
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System Trend Analysis Reduction Tool

W. Joseph Elliott,
Analex Systems and KSC

A computer program was written using Statistical Process Control (SPC)
methodology in order to prioritize Ground Support Equiment (GSE)
systems for further problem investigation. Problem data from
approximately 2500 GSE systems were retrieved from the Problem
Reporting and Corrective Action (PRACA) database at KSC. Following
Program processing, thirty-one systems failed one or more defined
evaluation criteria. These systems then becamse prime candidates for
detailed investigation of problem occurrences. Initial application of

the program focused on critical GSE systems. The program has since
been modified to address non-critical GSE and Shuttle flight systems.
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Goddard Abstract - Current Trend Analysis Activities

Goddard Trend Analysis Abstract for the workshop on the Automation of Time
Series, Signatures, and Trend Analysis.

Walt Truszkowski, Troy Ames, Sid Bailin, Scott Henderson

Currently our group is evaluating mechanisms for automating aspects of the
engineering telemetry trend analysis function now performed by spacecraft
analysts. For the Extreme Ultraviolet Explorer (EUVE) spacecraft, this
function is being supported by a system called the Generic Trend Analysis
Workstation (GTAW). GTAW supports the computation of minima, maxima,
averages, and standard deviations for specific data points over designated
time periods, and can produce graphical plots of the results. Our group

has been asked by the GTAW developers to explore extensions to their tool
set that could autonomously identify noteworthy situations or trends

within a data set and/or assist with the diagnosis and explanation of
situations and trends. We began this task by breaking down the trend
analysis function into sub-symbolic front end processing to support the
identification of irregularities in the telemetry stream, and symbolic

back end processing to support the interpretation of detected
irregularitiesQin particular, to explain the irregularities, and then to

predict future behavior from the explanation.

We have run some initial experiments using the TDAG algorithm as a
sub-symbolic front end processor to identify surprising events. These
experiments used simulated data sources and a crude scoring method to
evaluate the algorithm’s ability to form an accurate model of a data
source, and to identify when that data source had been perturbed. Our
initial results where supportive, and will be reported in this talk.

We ran up against three issues in the use of TDAG. The first is the
translation of a real valued data stream with noise and missing data
points into a stream of discrete symbols which can be processed by

the algorithm. The second is scoring the predictive accuracy of the
algorithm given the set of hypotheses in the algorithm’s state queue and
the actual next symbol seen. The third is setting the parameters of the
algorithm so that a maximally accurate model can be grown within the
constraints of available memory.

We are now running similar experiments on real telemetry data. Obtaining
suitable data has been a difficult process because of the other demands on
the time of the GTAW team. Anecdotes of this experience will be presented
along with any real results available by the time of the presentation.

We are also in the process of adapting modeling tools which we had
previously developed for simulation purposes to serve the role of back-end
symbolic processing. The new tool will be used initially to track the

state of the spacecraft based on the command stream which it has received.
Statistical and sub-symbolic methods sacrifice some of their utility by
averaging across different spacecraft states and activities. By

exploiting information from the symbolic model about the state of a system
we hope to produce analyses of the behavior of the spacecraft over time

for specific activities. Examples could be the slew rate for an

instrument, or the time required to fully charge a battery. This type of

el



product requires the synthesis of low level information,

such as the power usage of a subsystem, and high level information, such as
the time at which charging began and the time at which full charge was
achieved. While some of this high level information can be inferred from
other telemetry points, the command history is an obvious secondary source
and in some cases represents the true baseline against which behavior
should be compared. We will present slides on the current prototype of
this tool (DIG) and on its planned application to trend analysis.

We will briefly discuss our current plans for developing a library of
models and the configuring of those models to support a trend analysis
session. Additionally, we will discuss our plans for beginning work in
providing a knowledge-based trend analysis capability for battery-related
data.
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Predictive Information Research for Aircraft Fault
Management at NASA Langley

Anna Tryjillo,
NASA LaRC

Predictive Information Research for Aircraft Fault Management at NASA
Langley A widely held belief, by both pilots and researchers alike, is
that providing predictive information on subsystem behavior to flight
crews of commercial transport aircraft will be beneficial. For

example, the ability to alert the flight crew that the engine will be

out of oil in 20 minutes or that an engine seizure is imminent, may

give them more options for dealing with the situation or at least help
them be mentally prepared for it. There are data from incidents and
accidents which suggest that these predictions are possible because
there was evidence available on the flight deck of a failure well

before any exceedences were reached. However, as with most new
technologies that go onto modern flight decks, the benefits must
outweigh the costs. The benefits of prediction could include:

improved safety due to more strategic planning, earlier warnings so

that more options (e.g., airports) are available, and increased crew
situation awareness; and improved efficiency due to longer service

time for aircraft components, fewer inflight shut-downs, and more
fuel-efficient emergency procedures. The costs could include:
developmental and production costs of prediction information; accuracy
costs due to the risk of predicting the unknown future; and possible
negative flight crew impact due to increased workload, confusion, or
perhaps a degradation in situation awareness. It is the goal of this
predictive information research program to attempt to quantify some of
these costs and benefits and to provide recommendations in the form of
information systems and displays that would be appropriate on the
flight decks of commercial transport aircraft. The primary
consequences regarding the implementation of predictive information in
the flight deck pertain to its effects on the flight crew.

There are at least two options for implementing prediction

information. The first is for the automation to make the prediction

and to present it. The second is for the automation to preprocess

certain key information elements and to allow the crew to use those
elements to make a predicion. Whether the automation or the crew
make predictions, the information for the predictions may (and
probably should) be based on several key elements, which may include:
current trends based on history, fault information, status

information, and similar case histories. In the first option

(automated), the automation might preprocess this information and then
make a prediction based on these data. The system would then present
that prediction to the crew. In the second option (aiding), the crew
would only see the preprocessed information and would have to make the
actual prediction themselves. Automating may be both faster and more
accurate than having the flight crew process the information. But,

some advantages of aiding are that the preprocessed information may be
cheaper and more reliable, the crew may have information that the
system may not have, and it may improve the crewis situation
awareness.

A consideration of the strengths and weaknesses of both options,
aiding and automating, must be taken into account to obtain a proper

EVEY



balance. Initial research in prediction at Langley has focused and
will continue to focus on the utility or demand for predictive
information. Human/machine experiments will explore variations of the
two options stated above. In these experiments, the predictive
information will be contrived rather than calculated. Factors such as
accuracy, "look-ahead time," time until a critical event, and
parameter type (e.g., oil pressure, generator voltage) will be
manipulated. The goal is to discover a relationship between
variations of predictive information (based on levels of aiding or
automation and other factors) and the costs and benefits of that
information.

For pragmatic reasons, research into the computational techniques for
providing predictive information is being postponed. There are
several computational obstacles that must be hurdled in order to
provide predictive information, because only then can the assumption
that predictive information increases the safety and economy of flight
be fully substantiated. Some of these obstacles are the chaotic
behavior of systems (especially failed systems), the poverty of data
regarding system failures (neededfor development and testing), the
variability in individual parameter behavior (conflicting with the
desire for consistency in information provided for all parameters),
and the computational and sensor limitations of current aircraft. In
summary, our research objective for studying predictive information is
to first determine the impact of predictive information on the
man/machine system in terms of the safety and economy of flight. We
will control and vary the omniscience of the predictive information,
and we will explore the different levels of predictive information
aiding, from aiding the flight crew to automating prediction, in order
to enumerate its benefits. Since our objectives lie in the
human/machine interaction aspects of predictive information, we
welcome any assistance in research into the computational aspects of
providing predictive information.
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Summary of the Afternoon Discussion Session

Padhraic Smyth, Chair
(edited by Phil Laird)

P.S: To seed the discussion, I've listed several dimensions along which to analyze time
series:

e Purpose: causal models vs. prediction vs. anomaly detection.
¢ Operations: manual vs. semi-automated tools vs. full automation.

e Data vs. prior knowledge: data manipulation alone only goes so far; prior knowledge
1s essential to gofarther.

o Transients vs. long-term dynamics. Temporal properties are more important in the
former than in the latter, which sometimes may be treated as “static.”

Representation: signal amplitutde, thresholds, AR/MA models, wavelets, linear mod-
els, transform methods, non-linear methods, Markov models, etc.

o Noise vs structure: which is which?
e Raw data vs annotated data (unsupervised vs. supervised)
Also, we should ask what the hard problems are. Some that have been discussed here are:
e Matching problem/data to model/algorithm.
e Feature extraction, data preprocessing (a “black art”).
o Combining data and prior knowledge.

e Is "normal behavior” quantifiable?

NS: Is there a taxonomy of datasets, a small set of characteristic parameters? Andreas’
dataset attributes slide seemed to provide some ideas for that.

RS: Dimension reduction is hard, but at least it makes the problem solvable. The key
problem is to find better ways to reduce the dimension.

PL: Is there a fundamental measure of dimensionality, as there is for pattern classifica-
tion?

AW: Sometimes low dimensionality is bad: higher dimensionality can make it easier.

For example, ANNs often use a large number of dimensions/parameters, because embedding
the problem in higher dimensional space makes it easier to represent. Also, you need to be
careful about the term ”degrees of freedom” (various meanings exist).

He?



PS: Is a nonlinear approach really necessary? In light of Wold’s Theorem, aren’t linear
models sufficient?

TM: A simple counterexample: train a net to pick points that lie within the inner of
two concentric circles. The decision surface is nonlinear, yet a network learns it after seeing
examples involving only one point outside the inner circle.

RS: Networks do provide some protection from overfitting, through the relationships
among the parameters, but it is possible to overtrain. They are also good for spotting outliers
(errors) in the training data. Conventional statistics don’t have this property.

PS: Nonparameteric statistical methods are better at this than parametric statistics.

AW: What really is a linear time series? Here’s a test: given a timeseries, take the
Fourier transform, randomize the phase, and reinvert. The resulting signal has the identical
power spectrum, but all effects due to nonlinearities are destroyed. If you then get same
“answer” from your timeseries analysis box, the box is a linear method measuring linear
structure.

JN: That test is also a good test for chaos. If ‘you get the same dimension, then the
data wasn’t chaotic.

PS: What are the hard problems at some of the other centers?

DH: Some are just a matter of software and data handling. Also, it’s often hard selling

new techniques to customers: showing that they work, explaining how they work.

CM: People in charge of operations just won’t tolerate “black boxes ,” things they don'’t
understand and in which they have no confidence.

PL: Can we combine these problems into operations areas by bridging, combining tech-
niques from different disciplines? There is then less of a perception that the technique arises
in a field that the user doesn’t understand.

JZ: Code D from HQ, and the JSC Software Technology Branch are trying to build
toolkits for this purpose, especially for the OHMS /RCS (Orbital Health Management Sys-
tem/Reaction Control System). This is just now getting underway.

PS: There are many good opportunities here for umversity collaborations.

CM: The University of Cincinnati has a group studying radial basis nets, and got data
from LeRC for the purpose.

Unknown: NASA seems reluctant right now to give out data and software.

RS: Data is actually more valuable than software, but software is perceived as having
value by NASA and hence its distribution is more restricted.

CM: Datasets need to be carefully documented and maintained.

SC: I worry somewhat about the “toolkit” idea, and would encourage adopting a broader

view. Tools change and evolve. Also, feature extraction is crucial. E.g. the problem of
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sensitivity to the particular test probably can be handled with appropriately chosen features.

RS: Things are not now ready for off-the-shelf tools, but may well be in a few years.
In our project, we modularized the system so that different tools could be plugged into the
various boxes. :

WI: The intention of toolkits is not to freeze research; all the tools in the toolkit are
useful for a variety of jobs. The general problem is getting the system used; and a toolkit
facilitiates that screening process.

PL: There is a big gap between knowledge intensive methods and other methods in that
there seem to be no systematic ways to incorporate knowledge. Yet that seems essential to
the toolkit notion.

JN: How do we handle data that doesn’t come evently spaced or is otherwise hard to
“deconvolve”?

RS: Humans always “cheat”-use side information not given in the formal problem.
PS: And in some applications that really makes the difference between what a machine

can and cannot do.
SC: There is hope that recurrent neural nets will solve some of these problems.

TM: I have worked with ANNs in oil and medical industries. There the technique was
to put the signal attributes rather than the signal itself into the network.

AW: I am surprised that no one has brought up robust timeseries estimation. I expected
more discussion of how people spot outliers and what they do with them. Outliers arise, e.g,
from errors in the data. Are there any general approaches?

SC: You can’t separate outliers from knowledge of the domain.

JZ: When something abnormal happens, you can look for clues in the other things
happening at about the same time. For this to work, though, you need enough system-wide
information.

PS: Astronomers seem to have have a different philosphy from engineers abrout modeling
data.

WI How can you quantify the quality of your data, or the quality of the expert giving
you the training data? Who's driving whom when the expert and the end user are largely
the same?

RS: I would propose looking, not for major applications, but small applications with
positive value and high likelihood of success.
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NASA Workshop on the Automation of Time Series, Signatures, and Trend Analysis
May 12, 1993

Abstract: The Planetary Passage Prediction Project

Silvano Colombano and Nick Groleau
Artificial Intelligence Research Branch
NASA Ames Research Center

We have recently started an effort aimed at discovering distant

planetary systems from the observation of light fluctuations of their
central star. The project is called Planetary Passage Prediction

Project, or PPPP, or P4 for short. The idea is to build a predictor

for the emitted light time series and recognize significant deviations

of the data as planet phenomena. In a first effort, we will focus

on ACRIM (Active Cavity Radiometer Irradiance Monitor) data obtained
from the SMM (Solar Maximum Mission) satellite in 1989.

We envision making use of the cascade-correlation artificial neural network
algorithm to build and train the predictor network. The input data requires

a time delay line from the time series. The output is a single predicted data
point. Cascade-correlation is a technique that provides for the

automatic generation of hidden units in multiple layers arranged

in a cascade of connections.

More advanced work will include attempts at modifying the algorithm to
accomodate on-line learning and automatic determination of the number of input
units and their relative time delay. We are working closely with the

FRESIP project which is trying to secure funds to build a satellite

telescope for planet discovery.



Nonlinear Regression in Time Series for Short Term Prediction

Richard Kraft
Ames Research Center

Following the work of Ruelle, Collette, Eckmann, and others, techniques

are available to make predictions in the short term for time series

associated with deterministic chaotic systems. Although no universally
accepted definition of "chaotic system" exists, there is widespread agreement
that a necessary condition is the existence of a positive Lyapunov

exponent for the system, which essentially indicates that there is

extreme sensitivity to a set of initial conditions of full measure.

This technique posits the existence of an attractor in a phase
space of time delays. The attractor is usually fractal in nature.
There is mounting evidence that the dimension of the attractor
is closely related to the expected predictive accuracy.

Of central importance is the ability to accurately estimate hundreds

or thousands of parameters specifying the attractor in a tractable manner.
Current research is being devoted to this problem and its effective
application in the above context. Another focus of research concerns
combining stochastic modeling with nonlinear deterministic modeling,
as many systems exhibit a range of behaviors. Techniques are

being developed to identify the mode of behavior and to regulate the
forecasting technique accordingly.



Grammar Induction as a Mechanism
for Sequence Analysis

Kevin Thompson
KTHOMPSO@PTOLEMY.ARC.NASA.GOV

April 9, 1993

The task of “supervised learning” has dominated research in empirical ma-
chine learning for many years. Supervised learning systems acquire rules from
training examples labeled with a special class attribute. These learned rules, or
concepts, can then be used to classify test instances.

A major limitation of most systems for supervised learning is their focus on
fixed attribute-value languages; very few systems are able to learn from struc-
tured data, or data with differing numbers of attributes. One obvious approach
to learning from sequential data is to learn formal grammars. Context-free
grammars (CFGs) have the potential of being more expressive than Markovian
models, which are essentially probabilistic versions of the less-powerful class of
regular expression languages or finite-state machines. Grammar induction is
typically applied to sequential domains — e.g. ones with consecutive states, but
in which the temporal aspect per se is not an issue, like natural languages or
amino acid sequences. However, we believe that grammar induction may be ap-
propriate for certain types of signature analysis; CFGs have the potential both
of giving better predictive accuracy because of their added expressiveness, and
of leading to more understandable rules, because CFGs are often more succinct
than their finite-state machine counterparts.

We have recently begun work on inducing simple context-free grammars from
examples. We are exploring three key issues. Because of the enormous number
of possible grammars from a given set of sentences, effective induction requires
strong constraints on the space of grammars; we are thus exploring structural
constraints on instances. We are investigating better evaluation functions; ear-
lier work typically evaluates grammars based on either their size (simplicity)
or their ability to parse sentences, but little work uses both in any coherent
way. An evaluation function based on the minimum description length (MDL)
principle should give better guidance in search for the best grammar. Lastly?
we are experimenting with probabilistic versions of context-free grammars, as
“all-or-none” rules have limited applicability in many natural domains.
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Dynamic System Monitoring using Pattern Recognition
and Hidden Markov models

Padhraic Smyth
JPL

Conventional fault detection and diagnosis techniques rely on relatively
exact models of the system being monitored being available. In practice it
is not unusual that there is no accurate system model available a priori due
to the fact that the real system is complex and non-linear. Examples
of such systems are the large 70m and 34m ground antennas in the Deep
Space Network (DSN)(designed and operated by JPL for NASA). There is significant
interest in both maintaining the reliability of these antennas as they become
older and in improving their performance as deep space communication
moves to higher frequencies (from S,X-band to Ka-band) and longer
duration planetary missions become common.

In this talk I describe recent work at JPL on developing adaptive
methods for online monitoring of DSN antenna pointing systems. The methods
rely on the use of time series models, pattern recognition, and Hidden
Markov models. Standard autoregressive (AR) time series models are fit to
the sensor data in real-time. Changes in the values of the AR coefficients
are then detected by a pattern recognition component which generates
posterior probabilities that the system is in a particular state given
the data observed in that window. Finally, a hidden Markov model (HMM) is
used to integrate the state probabilities over time, thus providing
temporal context.

The pattern recognition model is trained in advance using available
system data and the HMM component is specified based on prior knowledge
of system failure rates. Field tests to date indicate that the overall
model has both rapid detection capabilities and excellent resistance
to false alarms. Ongoing work involves the use of density estimation
methods to detect novel states which have not been predicted in advance,
and the use of Bayesian methods to adapt both the parameters and the
structure of the overall model in real-time. The model is generally
applicable to monitoring of any dynamic system where no accurate system
model is known, but where training data from the system is available
a priori.
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